Abstract: Matrix multiplication computation (MMC) is a fundamental operation with various applications, including linear regression, k-nearest neighbor classification and biometric identification.
TPUs are Google’s specialized ASICs built exclusively for accelerating tensor-heavy matrix multiplication used in deep learning models. TPUs use vast parallelism and matrix multiply units (MXUs) to ...
Multiplication in Python may seem simple at first—just use the * operator—but it actually covers far more than just numbers. You can use * to multiply integers and floats, repeat strings and lists, or ...
Discovering faster algorithms for matrix multiplication remains a key pursuit in computer science and numerical linear algebra. Since the pioneering contributions of Strassen and Winograd in the late ...
Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of computing a matrix inverse using the Newton iteration algorithm. Compared to other algorithms, Newton ...
Google DeepMind’s AI systems have taken big scientific strides in recent years — from predicting the 3D structures of almost every known protein in the universe to forecasting weather more accurately ...
Google DeepMind today pulled the curtain back on AlphaEvolve, an artificial-intelligence agent that can invent brand-new computer algorithms — then put them straight to work inside the company's vast ...
Discover how nvmath-python leverages NVIDIA CUDA-X math libraries for high-performance matrix operations, optimizing deep learning tasks with epilog fusion, as detailed by Szymon Karpiński.
A new technical paper titled “Scalable MatMul-free Language Modeling” was published by UC Santa Cruz, Soochow University, UC Davis, and LuxiTech. “Matrix multiplication (MatMul) typically dominates ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results